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Abstract 
In this paper, we present a method for finding the optimal replenishment schedule for the production lot size model with deteriorating items 

where the deterioration is continuous in accordance with a general probability distribution under Last In First Out policy (LIFO) issuing policy.  

Key Words — Deteriorating items, Economic Production Quantity, Last In First Out issuing policy, Perturbation technique, Exponential 
distribution, Weibull distribution.  

——————————      —————————— 
1. Introduction 

The classical dynamic lot sizing model of Wagner 
and Whitin (1958) and its extensions deal with the problem 
of finding the optimal replenishment policy for an item 
under the assumption that inventory can be carried for an 
indefinite number of periods. This assumption cannot be 
justified if one considers potentially obsolete or perishable 
products like camera films, blood, agricultural products, 
electronic gadgets, etc. These products cannot be used after 
a certain number of periods for one of the following 
reasons: 

• The utility of the products drop to almost zero 
after a fixed time period (fixed life time due to 
physical or legal causes). 

• The utility of the product decreases throughout the 
life time (e.g., exponential decay). 

• The utility of the product drops to zero due to 
some external factor such as the failure of a special 
storage environment, a change in engineering 
design, etc. 

Friedman and Hoch (1978) considered a model 
similar to Wagner and Whitin (1958). In that inventory 
levels are reviewed periodically and demand is assumed 
known. In addition, they assumed that a known fraction    
(0 ≤ r i ≤ 1) of the units on hand of age i survive into the next 
period. They also stated that ‘the property that one only 
orders in periods in which starting stock is zero’ no longer 
holds when perishability is allowed. 

An EOQ model for items with a variable rate of 
deterioration, an infinite rate of production and no shortage 
was introduced by Covert and Philip (1973). 

 Extensive research has been done on fixed life time 
perishable products. An excellent review is provided by 
Nahmias (1982). 

 In this paper, an Economic Production Quantity 
model with Last In First Out (LIFO) issuing policy for 

demand with items that deteriorate continuously in 
accordance with a general probability distribution for the 
lifetime of an item is developed. 

2. Model Assumptions and notations 

  The inventory model presented in this paper is 
based on the following assumptions: 

• A single item is held in stock. 
• Demand rate λ is known and constant. 
• Production rate P is finite and constant. 
• Units are available for satisfying demand after 

their production. 
• There is no repair or replacement of items that 

deteriorate during a cycle. 
• The deterioration occurs only where the item is 

effectively in stock. 
• The production rate P is greater than the demand 

rate. 
• Shortages are not allowed. 
• The number of units is treated as a continuous 

variable. 
• The time for an item to deteriorate follows 

probability density function (p.d.f)  f(t)  (t ≥ 0) 
and cumulative distribution function  F(t) = 1 – 
R(t); so that, the instantaneous deterioration rate 
of an item is  D(t) = f(t) / (1– F(t)) = f(t) / R(t),t ≥ 0. 

• Last in first out (LIFO) principle is applied in 
satisfying demand. 

• It : Inventory level at time t 
• T : Inventory cycle time. 
• T1 : Time at which the inventory level is at 

maximum.  
 

3.  Mathematical Development 

Figure (3.1) shows an inventory cycle for a 
finite production rate where T is a cycle time. 
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                                          FIGURE 3.1 
 

During the time interval (0,T1) production occurs 
at a constant rate of P units per unit time and demand 
occurs at a constant rate of λ units per unit time. Due to 
LIFO policy, (P - λ)Δt enters the inventory system during 
the time interval (t, t + Δt) where t ≤ T1. 

At time t1 where t ≤ t1 ≤ T1, the quantity     (P – λ)Δt 
which entered the inventory during          (t, t+Δt) reduces to 
(P – λ )R(t1 – t)Δt due to deterioration. 

This gives the inventory level at time t1, 𝐼𝑡1 as follows 

𝐼𝑡1 = ∫ (𝑃 − λ)R(t1 − t)dt𝑡1
0         ------------ (3.1) 

During the time interval (T1,T), there is no  
production and demand occurs at a constant rate of λ units 
per unit time which is satisfied from the inventory 
accumulated during (0,T1).Thus, for the interval (t2,t2+ Δt) 
where T1 ≤ t2 ≤ T, λΔt2 will be the demand. 
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                                             FIGURE 3.2 
 

Assume that the demand λΔt2 is satisfied with the 
items produced during (t(t2) – Δt, t(t2))     shown in figure 
(3.2). 

Thus, at time t2 the item produced during (t(t2),T1) 
is not in the inventory system because they already satisfied 
the demand occurred during (t(t2),t2) due to LIFO principle 
. This gives 

     λΔt2 = (P - λ )R(t2 - t)(-Δt)  --------------- (3.2) 

Therefore, 

                    λ dt2
dt

= −(P− λ)R(t2 − t) ----------------------- (3.3) 

If R(t) is known, t(t2) can be found  from Equation 
(3.3) with initial condition, t = T1 at t2 = T1 due to LIFO 
policy and the inventory level at t2 will be given by 

𝐼𝑡2 =  ∫ (𝑃 −𝑡(𝑡2)
0 λ)R(t2 − y)dy   -------------------- (3.4) 

3.1 CASES 

From the general inventory level developed above, 
two particular cases are considered by taking the 
exponential distribution and the general Weibull 
distribution for the time to deterioration of an item. 

3.1.1 Exponential distribution for the time to 
deterioration of an item 

Let the p.d.f of the time to deterioration of an item be  

𝑓(𝑡) = �𝛼𝑒
(−𝛼𝑡) , 𝑡 ≥ 0,𝛼 > 0
0 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 � 

For this distribution                                                                       
  𝐹(𝑡) = ∫ 𝑓(𝑡)𝑑𝑡𝑡

0   

                           = ∫ 𝛼𝑒(−𝛼𝑡)𝑑𝑡𝑡
0  

                        = 1 − 𝑒−𝛼𝑡 

Thus, R(t) = 1 – F(t) = e(-αt) and 𝐷(𝑡) = 𝑓(𝑡)
𝑅(𝑡)

= 𝛼.   

With substitution of 𝑒(−𝛼(𝑡1−𝑡)) into R(t1-t) of Equation (3.1) 
and integrating we get, 

𝐼𝑡1 = � (𝑃 − 𝜆)𝑒(−𝛼(𝑡1−𝑡))𝑑𝑡
𝑡1

0
 

                    = (𝑃−𝜆)
𝛼

�1− 𝑒(−𝛼𝑡1)�, 0 ≤ 𝑡1 ≤ 𝑇1  ---- (3.5) 

Similarly from Equation (3.4) we get                                       

𝐼𝑡2 = � (𝑃 − 𝜆)𝑒(−𝛼(𝑡2−𝑦))𝑑𝑦

𝑡(𝑡2)

0

 

                  = (𝑃−𝜆)
𝛼

𝑒(−𝛼𝑡2)[𝑒𝛼𝑡 − 1]   ----------------- (3.6) 

From Equation (3.3) we get 

𝜆
𝑑𝑡2
𝑑𝑡

= −(𝑃 − 𝜆)𝑒(−𝛼(𝑡2−𝑡)) 

Solving the above equation we get 
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(𝑃 − 𝜆)𝑒𝛼𝑡

𝛼
=
−𝜆𝑒𝛼𝑡2
𝛼

+ 𝐶 

where C is the constant of integration. Applying the 
boundary condition, t =T1 at t2=T1, we get, 

(𝑃 − 𝜆)𝑒𝛼𝑡 = 𝑃𝑒𝛼𝑡1 − 𝜆𝑒𝛼𝑡2    ---------------------- (3.8) 

Substituting Equation (3.8) in equation (3.6) yields  

              𝐼𝑡2 = 1
𝛼
�𝑒(−𝛼𝑡2)(𝑃𝑒𝛼𝑇1 − 𝜆𝑒𝛼𝑡2)− (𝑃− 𝜆)𝑒(−𝛼𝑡2)� 

   = 1
𝛼

{𝑃𝑒𝛼(𝑇1−𝑡2) − 𝜆 − (𝑃− 𝜆)𝑒(−𝛼𝑡2)} ----------- (3.9) 

3.1.2 General Weibull distribution for the time to 
deterioration of an item 

Let the p.d.f of the time to deterioration of an item be 

𝑓(𝑡) = �𝛼𝛽𝑡
𝛽−1𝑒(−𝛼𝑡𝛽) , 𝑡 ≥ 0,𝛼 > 0,𝛽 > 0

0 ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

where α, β are some constants determined by the 
deterioration process. For this distribution,                       
 𝐹(𝑡) = ∫ 𝑓(𝑡)𝑑𝑡𝑡

0                                                                                                    
         = ∫ 𝛼𝛽𝑡𝛽−1𝑒(−𝛼𝑡𝛽)𝑑𝑡𝑡

0                                                                               
         = 1− 𝑒(−𝛼𝑡𝛽) 

Thus,   𝑅(𝑡) = 1 −𝐹(𝑡) = 𝑒(−𝛼𝑡𝛽) and        

             𝐷(𝑡) = 𝑓(𝑡)
𝑅(𝑡)

= 𝛼𝛽𝑡𝛽−1 

From Equations (3.1) and (3.4) we get, 

𝐼𝑡1 = ∫ (𝑃 − 𝜆)𝑒(−𝛼(𝑡1−𝑡)𝛽)𝑡1
0 𝑑𝑡    ------------------ (3.10) 

               𝐼𝑡2 = ∫ (𝑃 − 𝜆)𝑒(−𝛼(𝑡2−𝑦)𝛽)𝑡(𝑡2)
0 𝑑𝑦  ----------------- (3.11) 

From Equation (3.3) we get, 

𝜆 𝑑𝑡2
𝑑𝑡

= −(𝑃− 𝜆)𝑒�−𝛼(𝑡2−𝑡)𝛽�   ---------------------- (3.12) 

To solve Equation (3.12),let 

      𝛼(𝑡2 − 𝑡)𝛽 = 𝑥   ---------------------------------- (3.13) 

Differentiating Equation (3.13) we get  

𝛼𝛽(𝑡2 − 𝑡)𝛽−1 �
𝑑𝑡2
𝑑𝑡

− 1� =
𝑑𝑥
𝑑𝑡

 

Using Equation (3.12), the above equation becomes 

𝛼𝛽 �
𝑥
𝛼
�
𝛽−1
𝛽
�
−(𝑃 − 𝜆)

𝜆
𝑒(−𝑥) − 1� =

𝑑𝑥
𝑑𝑡

 

              𝛼
1
𝛽𝛽𝑥�

𝛽−1
𝛽 � �𝜆−𝑃

𝜆
𝑒(−𝑥) − 1� = 𝑑𝑥

𝑑𝑡
   ------------------ (3.14) 

Solving Equation (3.14) we get 

               𝑡(𝑡2) = −∫ �𝛼
1
𝛽𝛽𝑦

𝛽−1
𝛽 �1 + 𝑃−𝜆

𝜆
𝑒(−𝑦)��

−1

𝑑𝑦 + 𝐶𝑥
0  

where C is the constant of integration. Applying boundary 
condition, t = T1at t2 = T1, which in turn implies x = 0 at t = 
T, we get 

   𝑡(𝑡2) = −∫ �𝛼
1
𝛽𝛽𝑦

𝛽−1
𝛽 �1 + 𝑃−𝜆

𝜆
𝑒(−𝑦)��

−1

𝑑𝑦 + 𝑇1   
𝑥
0 ---- (3.15) 

Equation (3.15) is a transcendental equation and solving 
with respect to t(t2) is very difficult. One way to obtain an 
approximate solution of t(t2) is to solve equation (3.12) 
under assumption that α ≤ 1. 

Approximation 

Let u = t2 – t and v = P – λ. Then  Equation (3.12) becomes 

𝜆 �𝑑𝑢
𝑑𝑡

+ 1� = −𝑣𝑒(−𝛼𝑢𝛽)-------------------------- (3.16) 

Solving equation (3.16) we get    

       
(−𝜆)

𝜆+𝑣𝑒(𝜆𝑢𝛽)
𝑑𝑢 = 𝑑𝑡   

       ∫ (−𝜆)𝑑𝑢′

𝜆+𝑣𝑒(−𝜆𝑢′
𝛽

)

𝑢
0 = 𝑡 + 𝐶 

where C is the constant of integration. Applying the 
boundary condition, at t2=T1, t=T1, which in turn implies, at 
u=0, t=T1, we get 

∫ (−𝜆)𝑑𝑢′

𝜆+𝑣𝑒(−𝜆𝑢′
𝛽

)

𝑢
0 = 𝑡 − 𝑇1------------------------- (3.17) 

To solve Equation (3.17) first consider the L.H.S. Expanding 
the denominator using the series form of the exponential 
and ignoring terms with third and higher order powers of 
α, we get 
                                                                                                       

𝜆 + 𝑣𝑒(−𝜆𝑢′
𝛽

) = 𝜆 + 𝑣 − 𝑣𝛼𝑢′𝛽 + 𝑣𝛼2𝑢′
2𝛽

2
+ 𝑜(𝛼3) 

       = (𝜆 + 𝑣)�1 −
𝑣𝛼𝑢′

𝛽
−𝑣𝛼

2𝑢′
2𝛽

2
𝜆+𝑣

+ 𝑜(𝛼3)� 
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Hence the integrand in Equation (3.17) becomes    

(−𝜆)

𝜆+𝑣𝑒(−𝛼𝑢′
𝛽

)
= −𝜆

𝜆+𝑣
�1 −

𝑣𝛼𝑢′
𝛽
−𝑣𝛼

2𝑢′
2𝛽

2
𝜆+𝑣

+ 𝑜(𝛼3)�

−1

 

      = −𝜆
𝜆+𝑣

�1 + 𝑣
𝜆+𝑣

𝛼𝑢′𝛽 + 𝑣(𝑣−𝜆)
2(𝜆+𝑣)2

𝛼2𝑢′2𝛽 + 𝑜(𝛼3)� 

Thus, the L.H.S. of Equation (3.17) becomes 

�
(−𝜆)𝑑𝑢′

𝜆 + 𝑣𝑒(−𝛼𝑢′
𝛽

)

𝑢

0

=
−𝜆
𝜆 + 𝑣

��1 +
𝑣

𝜆 + 𝑣
𝛼𝑢′𝛽 +

𝑣(𝑣 − 𝜆)
2(𝜆 + 𝑣)2

𝛼2𝑢′2𝛽
𝑢

0

+ 𝑜(𝛼3)�𝑑𝑢′ 

  = −𝜆
𝜆+𝑣

�1 + 𝑣𝛼𝑢′
𝛽+1

(𝜆+𝑣)(𝛽+1)
+ 𝑣(𝑣−𝜆)𝛼2𝑢′

2𝛽+1

2(𝜆+𝑣)2(2𝛽+1)
+ 𝑜(𝛼3)�

0

𝑢

 

  = −𝜆𝑢
𝜆+𝑣

�1 + 𝑣𝛼𝑢𝛽

(𝜆+𝑣)(𝛽+1)
+ 𝑣(𝑣−𝜆)𝛼2𝑢2𝛽

2(𝜆+𝑣)2(2𝛽+1)
+ 𝑜(𝛼3)� 

Thus Equation (3.17) becomes                                  

   −𝜆𝑢
𝜆+𝑣

�1 + 𝑣𝛼𝑢𝛽

(𝜆+𝑣)(𝛽+1)
+ 𝑣(𝑣−𝜆)𝛼2𝑢2𝛽

2(𝜆+𝑣)2(2𝛽+1)
+ 𝑜(𝛼3)� = 𝑡 − 𝑇1---- (3.18) 

Let 𝑡 = 𝑔(𝑡2) + 𝛼𝑔1(𝑡2) + 𝛼2𝑔2(𝑡2) + 𝑜(𝛼3) then u becomes  

  𝑢 = 𝑡2 − 𝑔0 − 𝛼𝑔1 − 𝛼2𝑔2 + 𝑜(𝛼3)   ----------------------- (3.19) 

Substituting Equation (3.19) in (3.18) the L.H.S. of Equation 
(3.18) becomes  

𝐿𝐻𝑆 = −𝜆
𝜆+𝑣

�𝑡2 − 𝑔0 − 𝛼𝑔1 − 𝛼2𝑔2  + 𝑜(𝛼3)��� 𝑣𝛼
(𝜆+𝑣)(𝛽+1)

� (𝑡2 −

                        𝑔0 − 𝛼𝑔1 − 𝛼2𝑔2)𝛽 + 𝑣(𝑣−𝜆)𝛼2

2(𝜆+𝑣)2(2𝛽+1)
(𝑡2 − 𝑔0 −

                                                                       𝛼𝑔1 − 𝛼2𝑔2)2𝛽 + 𝑜(𝛼3)� 

=   −𝜆
𝜆+𝑣

�𝑡2 − 𝑔0 − 𝛼𝑔1 − 𝛼2𝑔2  + 𝑜(𝛼3)� �� 𝑣𝛼
(𝜆+𝑣)(𝛽+1)

� (𝑡2 −

𝑔0)𝛽 �1− 𝛼𝑔1+𝛼2𝑔2
𝑡2−𝑔0

�+  𝑣(𝑣−𝜆)𝛼2

2(𝜆+𝑣)2(2𝛽+1)
(𝑡2 − 𝑔0)2𝛽 + 𝑜(𝛼3)�  

Now using the approximation formula (1 – x)β = 1 – βx, we 
get 

𝐿𝐻𝑆 = −𝜆
𝜆+𝑣

�𝑡2 − 𝑔0 − 𝛼𝑔1 − 𝛼2𝑔2  + 𝑜(𝛼3)��� 𝑣𝛼
(𝜆+𝑣)(𝛽+1)

� (𝑡2 −

𝑔0)𝛽  �1− 𝛼𝑔1+𝛼2𝑔2
𝑡2−𝑔0

�+ 𝑣(𝑣−𝜆)𝛼2

2(𝜆+𝑣)2(2𝛽+1)
(𝑡2 − 𝑔0)2𝛽 + 𝑜(𝛼3)�  

With this equation (3.18) becomes 

−𝜆
𝜆+𝑣

�𝑡2 − 𝑔0 − 𝛼𝑔1 − 𝛼2𝑔2  + 𝑜(𝛼3)� �� 𝑣𝛼
(𝜆+𝑣)(𝛽+1)

� (𝑡2 −

𝑔0)𝛽  �1− 𝛼𝛽𝑔1
𝑡2−𝑔0

�+ 𝑣(𝑣−𝜆)𝛼2

2(𝜆+𝑣)2(2𝛽+1)
(𝑡2 − 𝑔0)2𝛽 + 𝑜(𝛼3)�        

    =    𝑔0 + 𝛼𝑔1 + 𝛼2𝑔2 − 𝑇1 + 𝑜(𝛼3)    ---------- (3.20) 

Equating terms with the same power of α: 

First equating the constant terms we get                                         

𝑔0 − 𝑇1 =
−𝜆
𝜆 + 𝑣

(𝑡2 − 𝑔0) 

=
−𝜆
𝑃

(𝑡2 − 𝑔0) 

                    𝑔0 = 1
𝑃−𝜆

(𝑃𝑇1 − 𝜆𝑡2)   --------------- (3.21) 

Now, equating the terms with α we egt  

             𝑔1 = −𝜆𝑣(𝑡2−𝑔0)𝛽+1

(𝜆+𝑣)2(𝛽+1)
+ 𝜆

𝜆+𝑣
𝑔1 

                   = −𝜆(𝑃−𝜆)(𝑡2−𝑔0)𝛽+1

𝑃2(𝛽+1)
+ 𝜆

𝑃
𝑔1 

               𝑔1 = −𝜆
𝑃(𝛽+1)

(𝑡2 − 𝑔0)𝛽+1    --------------- (3.22) 

Finally, equating the terms with α2 we get 

𝑔2 =
𝜆vβg1

(𝜆 + 𝑣)2(𝛽 + 1)
(𝑡2 − 𝑔0)𝛽

−
𝜆v(v− λ)

2(𝜆+ 𝑣)3(2𝛽 + 1)
(𝑡2 − 𝑔0)2𝛽+1

+
𝜆vg1

(𝜆+ 𝑣)2(𝛽 + 1)
(𝑡2 − 𝑔0)𝛽 +

𝜆
𝜆 + 𝑣

𝑔2 

       =
𝜆(𝑃 − 𝜆)βg1
𝑃2(𝛽 + 1)

(𝑡2 − 𝑔0)𝛽

+
𝜆(P− λ)(P− 2λ)

2𝑃3(2𝛽 + 1)
(𝑡2 − 𝑔0)2𝛽+1

+
𝜆(𝑃 − 𝜆)g1
𝑃2(𝛽 + 1)

(𝑡2 − 𝑔0)𝛽 +
𝜆
𝑃
𝑔2 

𝑔2 =
(𝑡2 − 𝑔0)𝛽

𝑃
�
𝜆𝛽𝑔1
𝛽 + 1

+
𝜆𝑔1
𝛽 + 1

−
𝜆(𝑃 − 2𝜆)(𝑡2 − 𝑔0)𝛽+1

2𝑃(2𝛽 + 1)
� 

    𝑔2 = (𝑡2−𝑔0)𝛽

𝑃
�𝜆𝑔1 −

𝜆(𝑃−2𝜆)(𝑡2−𝑔0)𝛽+1

2𝑃(2𝛽+1)
� ----------- (3.23) 

With the perturbation technique, it is theoretically 
possible to obtain an approximate value of t to any desired 
accuracy using higher powers of α. Table(3.1) is the 
tabulated results of t(t2) from example problems to compare 
the approximate formula of t(t2), t(t2)=g0(t2) + αg1(t2) + 
α2g2(t2) where g1(t2) is given by Equations (3.21), (3.22) and 
(3.23) respectively with the exact values calculated from 
Equation (3.8) when β =1. 

Table 3.1 : Calculated values of t(t2) with P = 12, λ = 8 and                                           
                    T1 = 5. 

E : Exact value from equation (3.8) 

A : Value from t = g0 + αg1(t2) + α2g2(t2) 
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Cases 
T2 

E α = 0.1,     
β = 0.1 

α = 0.1,  
β = 0.5 

α = 0.1, 
β = 1.5 

A A A 
5.0 5.0000 5.0000 5.0000 5.0000 
5.5 3.9181 3.9188 3.9129 3.9189 
6.0 2.6385 2.65 2.7474 2.4628 
6.5 1.0893 1.1563 1.1527 0.234 
CYCLE TIME 6.8637 6.8438 7.0938 6.5625 

        Table 3.1 

We notice that the results from approximate 
formula are in good agreement with those by exact values. 
Once t(t2) is found, the inventory level can be calculated 
with Equation (3.10) and Equation (3.11). 

To illustrate the use of the formula an approximate 
optimum production quantity is found in the production 
system where no shortage is permitted. Then total cost (TC) 
during a cycle time, T, consists of setup cost, production 
cost and holiday cost. Thus 

𝑇𝐶 = 𝐶3 + 𝐶𝑃𝑇1 + 𝐶1 �� 𝐼𝑡1𝑑𝑡1

𝑇1

0

+ �𝐼𝑡2

𝑇

𝑇1

𝑑𝑡2� 

T1* which minimizes the total cost cannot be derived in a 
closed form. But an approximate optimal solution can be 
found by a numerical calculation using the formula 
developed. 

4. Conclusion 

In this problem, inventory level in a production quantity 
model for items that deteriorate continuously in accordance 
with a general probability distribution has been developed. 
When the rate of deterioration is variable, the items which 
have entered inventory at different times have a different 
rate of deterioration, since the amount deteriorated during 
a given interval depends on how long an item has been in 
stock. To overcome this difficulty we assume the Last In 
First Out(LIFO) issuing policy. Weibull and exponential 
distribution for the time to deterioration of an item are 
considered. 

Due to difficulty in solving t(t2) in Eq. (3.15) an 
approximation formula using perturbation techniques is 
developed.  
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